AS Further Mathematics Unit 1: Further Pure Mathematics A General instructions for marking GCE Mathematics

1. The mark scheme should be applied precisely and no departure made from it. Marks should be awarded directly as indicated and no further subdivision made.

2. <u>Marking Abbreviations</u>

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao = correct answer only

MR = misread

PA = premature approximation

- bod = benefit of doubt
- oe = or equivalent
- si = seen or implied

ISW = ignore subsequent working

F.T. = follow through (\checkmark indicates correct working following an error and \checkmark indicates a further error has been made)

Anything given in brackets in the marking scheme is expected but, not required, to gain credit.

3. <u>Premature Approximation</u>

A candidate who approximates prematurely and then proceeds correctly to a final answer loses 1 mark as directed by the Principal Examiner.

4. <u>Misreads</u>

When the <u>data</u> of a question is misread in such a way as not to alter the aim or difficulty of a question, follow through the working and allot marks for the candidates' answers as on the scheme using the new data.

This is only applicable if a wrong value, is used consistently throughout a solution; if the correct value appears anywhere, the solution is not classed as MR (but may, of course, still earn other marks).

5. <u>Marking codes</u>

- 'M' marks are awarded for any correct method applied to appropriate working, even though a numerical error may be involved. Once earned they cannot be lost.
- 'm' marks are dependant method marks. They are only given if the relevant previous 'M' mark has been earned.
- 'A' marks are given for a numerically correct stage, for a correct result or for an answer lying within a specified range. They are only given if the relevant M/m mark has been earned either explicitly or by inference from the correct answer.
- 'B' marks are independent of method and are usually awarded for an accurate result or statement.
- 'S' marks are awarded for strategy
- 'E' marks are awarded for explanation
- 'U' marks are awarded for units
- 'P' marks are awarded for plotting points
- 'C' marks are awarded for drawing curves

AS Further Mathematics Unit 1: Further Pure Mathematics A Solutions and Mark Scheme

No. When $n = 1, 4^n + 2 = 6$ which is divisible by 6 so the proposition is true for $n = 1$. Assume the proposition to be true for $n = k$ so that $4^k + 2$ is divisible by 6 and equals $6N$ Consider (for $n = k + 1$) $4^{k+1} + 2 = 4 \times 4^k + 2$ $= 4 \times (6N - 2) + 2$ $= 24N - 6$ M1 AO2 This is divisible by 6 so true for $k \Rightarrow$ true for k + 1. Since true for $n = 1$, the result is proved by induction. A1 AO2 2.(a) $\frac{-1+7i}{2+i} = \frac{(-1+7i)(2-i)}{(2+i)(2-i)}$ = 1+3i M1 AO3 $2(x + iy) + i(x - iy) = 1 + 3ix + 2y = 3(x = -\frac{1}{3}; y = \frac{5}{3})z = \frac{-1+5i}{3} A1 AO3 (b) z = \frac{\sqrt{26}}{3} = 1.70 (1.699673171)\tan^{-1}(-5) = -1.3734arg(z) = -1.3734 + \pi = 1.77 (1.768191887) B1 AO1$	Qu.	Solution	Mark	AO	Notes
So the proposition is true for $n = 1$. Assume the proposition to be true for $n = k$ so that $4^{k} + 2$ is divisible by 6 and equals $6N$ Consider (for $n = k + 1$) $4^{k+1} + 2 = 4 \times 4^{k} + 2$ $= 4 \times (6N - 2) + 2$ = 24N - 6 This is divisible by 6 so true for $k \Rightarrow$ true for k + 1. Since true for $n = 1$, the result is proved by induction. 7 2.(a) $\frac{-1+7i}{2+i} = \frac{(-1+7i)(2-i)}{(2+i)(2-i)}$ $= \frac{5+15i}{5}$ = 1+3i 2(x + iy) + i(x - iy) = 1 + 3i x + 2y = 3 $(x = -\frac{1}{3}; y = \frac{5}{3})$ $z = \frac{-1+5i}{3}$ A1 AO3 $(x = -\frac{1}{3}; y = \frac{5}{3})$ $z = \frac{-1+5i}{3}$ A1 AO1 (b) $ z = \frac{\sqrt{26}}{3} = 1.70 (1.699673171)$ $\tan^{-1}(-5) = -1.3734$ $arg(z) = -1.3734 + \pi = 1.77 (1.768191887)$ B1 AO1					110163
Assume the proposition to be true for $n = k$ so that $4^k + 2$ is divisible by 6 and equals $6N$ M1 AO2 Consider (for $n = k + 1$) M1 AO2 $4^{k+1} + 2 = 4 \times 4^k + 2$ A1 AO2 $= 4 \times (6N - 2) + 2$ A1 AO2 $= 24N - 6$ A1 AO2 This is divisible by 6 so true for $k \Rightarrow$ true for k A1 AO2 $= 24N - 6$ A1 AO2 This is divisible by 6 so true for $k \Rightarrow$ true for k A1 AO2 $= 24N - 6$ A1 AO2 This is divisible by 6 so true for $k \Rightarrow$ true for k A1 AO2 $= 24N - 6$ A1 AO2 This is divisible by 6 so true for $k \Rightarrow$ true for k A1 AO2 $= 1, 1$ $= 1, 16$ A1 AO2 $= 1 + 3i$ A1 AO3 A1 $= \frac{5 + 15i}{5}$ A1 AO3 A1 $2(x + iy) + i(x - iy) = 1 + 3i$ A1 AO3 A1 $x + 2y = 3$ A1 AO3 A1 AO3 $(x = -\frac{1}{3}; y = \frac{5}{3})$ A1 AO3 A1 AO1 $(z = -\frac{1 + 5i}{3}$	1.		B1	AO2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
Consider (for $n = k + 1$) $4^{k+1} + 2 = 4 \times 4^k + 2$ $= 4 \times (6N - 2) + 2$ = 24N - 6 This is divisible by 6 so true for $k \Rightarrow$ true for k + 1. Since true for $n = 1$, the result is proved by induction. 2.(a) $\frac{-1 + 7i}{2 + i} = \frac{(-1 + 7i)(2 - i)}{(2 + i)(2 - i)}$ $= \frac{5 + 15i}{5}$ = 1 + 3i 2(x + iy) + i(x - iy) = 1 + 3i x + 2y = 3 $(x = -\frac{1}{3}; y = \frac{5}{3})$ $z = \frac{-1 + 5i}{3}$ (b) $ z = \frac{\sqrt{26}}{3} = 1.70 (1.699673171)$ $\tan^{-1}(-5) = -1.3734$ $\arg(z) = -1.3734 + \pi = 1.77 (1.768191887)$ M1 AO2 A1 AO2 A1 AO2 A1 AO3 A1			M1	AO2	
$\begin{array}{c cccc} 4^{k+1}+2 = 4 \times 4^{k+2} \\ = 4 \times (6N-2) + 2 \\ = 24N-6 \\ \text{This is divisible by 6 so true for k \Rightarrow \text{true for } k \\ + 1. \text{ Since true for } n = 1, \text{ the result is proved} \\ \text{by induction.} \end{array} \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$		· 1	М1	A02	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	
$\begin{array}{c cccc} & \begin{array}{c} -1 + 5(0) & 2 \\ = 24N - 6 \\ \end{array} & \begin{array}{c} A1 \\ \Rightarrow 24N - 6 \\ \end{array} & \begin{array}{c} A1 \\ \Rightarrow 1 \\ \Rightarrow 1 \\ \Rightarrow 24N - 6 \\ \end{array} & \begin{array}{c} A1 \\ \Rightarrow 1 \\ \Rightarrow 1 \\ \Rightarrow 1 \\ \Rightarrow 1 \\ \Rightarrow 24N - 6 \\ \end{array} & \begin{array}{c} A1 \\ \Rightarrow 1 \\ \end{array} & \begin{array}{c} A1 \\ \Rightarrow 1 \\ \Rightarrow 1 \\ \Rightarrow 1 \\ \Rightarrow 1 \\ \end{array} & \begin{array}{c} A02 \\ \hline A1 \\ \Rightarrow 02 \\ \hline A02 \\ \hline A1 \\ \Rightarrow 02 \\ \hline A02 \\ \hline A1 \\ \Rightarrow 03 \\ \hline A03 \\ \hline A1 \\ \Rightarrow 03 \\ \hline A03 \\ \hline A1 \\ \Rightarrow 03 \\ \hline A03 \\ \hline A1 \\ \Rightarrow 03 \\ \hline A03 \\ \hline A1 \\ \hline A03 \\ \hline A03 \\ \hline A1 \\ \hline A03 \\ \hline A03 \\ \hline A1 \\ \hline A01 \\ \hline B1 \\ \hline B1 \\ \hline A01 \\ \hline B1 \\ \hline A01 \\ \hline B1 \\ $					
This is divisible by 6 so true for $k \Rightarrow$ true for k + 1. Since true for $n = 1$, the result is proved by induction. 2.(a) $\frac{-1+7i}{2+i} = \frac{(-1+7i)(2-i)}{(2+i)(2-i)}$ $= \frac{5+15i}{5}$ = 1+3i 2(x+iy) + i(x-iy) = 1+3i 2x + y = 1 x + 2y = 3 $(x = -\frac{1}{3}; y = \frac{5}{3})$ $z = \frac{-1+5i}{3}$ A1 AO3 A1 AO1 B1 AO1 B1 AO1 B1 AO1 B1 AO1					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
by induction. 2.(a) $\frac{-1+7i}{2+i} = \frac{(-1+7i)(2-i)}{(2+i)(2-i)}$ $= \frac{5+15i}{5}$ $= 1+3i$ A1 AO3 2(x+iy) + i(x-iy) = 1+3i A1 AO3 2(x+iy) + i(x-iy) = 1+3i A1 AO3 2(x+iy) + i(x-iy) = 1+3i A1 AO3 A1 AO1 A1 AO1		•	A1	AO2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			[-7]		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			[/]		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.(a)	$\frac{-1+7i}{-1+7i} = \frac{(-1+7i)(2-i)}{-1+7i}$	• • •		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2+i (2+i)(2-i)	M1	AO3	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_ 5+15i	A1	AO3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$=\frac{1}{5}$			
$\begin{aligned} 2(x + iy) + i(x - iy) = 1 + 3i \\ 2x + y = 1 \\ x + 2y = 3 \\ (x = -\frac{1}{3}; y = \frac{5}{3}) \\ z = \frac{-1 + 5i}{3} \\ z = -1 + 5i$		= 1 + 3i	A1	AO3	
$\begin{aligned} 2x + y &= 1 \\ x + 2y &= 3 \\ (x &= -\frac{1}{3}; y &= \frac{5}{3}) \\ z &= \frac{-1 + 5i}{3} \\ (b) & z &= \frac{\sqrt{26}}{3} &= 1.70 \ (1.699673171) \\ \tan^{-1}(-5) &= -1.3734 \\ \arg(z) &= -1.3734 + \pi &= 1.77 \ (1.768191887) \\ (c) & z &= \frac{400}{3} \\ (c) & z &= \frac{1}{3} \\ z &=$		2(r + iy) + i(r - iy) = 1 + 3i	M1	AO3	FT from line above
(b) $\begin{aligned} x + 2y &= 3\\ (x = -\frac{1}{3}; y = \frac{5}{3})\\ z = \frac{-1+5i}{3} \end{aligned}$ (b) $\begin{aligned} z &= \frac{\sqrt{26}}{3} = 1.70 \ (1.699673171)\\ \tan^{-1}(-5) &= -1.3734\\ \arg(z) &= -1.3734 + \pi = 1.77 \ (1.768191887) \end{aligned}$ (c) $\begin{aligned} A1 & AO3 \\ A1 & AO1 \\ B1 & AO1 \\ B1 & AO1 \\ B1 & AO1 \end{aligned}$			A1	AO3	
(b) $ z = \frac{\sqrt{26}}{3} = 1.70 \ (1.699673171)$ $\tan^{-1}(-5) = -1.3734 + \pi = 1.77 \ (1.768191887)$ A1 A01 B1 A01 B1 A01 B1 A01 B1 A01		•	A1	AO3	
(b) $ z = \frac{\sqrt{26}}{3} = 1.70 \ (1.699673171)$ $\tan^{-1}(-5) = -1.3734$ $\arg(z) = -1.3734 + \pi = 1.77 \ (1.768191887)$ A1 A01 B1 A01 B1 A01 B1 A01		•			
(b) $ z = \frac{\sqrt{26}}{3} = 1.70 \ (1.699673171)$ $\tan^{-1}(-5) = -1.3734$ $\arg(z) = -1.3734 + \pi = 1.77 \ (1.768191887)$ B1 AO1 B1 AO1 B1 AO1		$(x = -\frac{1}{3}; y = -\frac{1}{3})$			
(b) $ z = \frac{\sqrt{26}}{3} = 1.70 \ (1.699673171)$ $\tan^{-1}(-5) = -1.3734$ $\arg(z) = -1.3734 + \pi = 1.77 \ (1.768191887)$ B1 AO1 B1 AO1 B1 AO1		-1+5i	۸1	101	
$\begin{vmatrix} z = \frac{\sqrt{20}}{3} = 1.70 \ (1.699673171) \\ \tan^{-1}(-5) = -1.3734 \\ \arg(z) = -1.3734 + \pi = 1.77 \ (1.768191887) \end{vmatrix} \qquad B1 \qquad AO1 \\ B1$		$z = \frac{1}{3}$	AI	AUT	
$\begin{vmatrix} z = \frac{\sqrt{20}}{3} = 1.70 \ (1.699673171) \\ \tan^{-1}(-5) = -1.3734 \\ \arg(z) = -1.3734 + \pi = 1.77 \ (1.768191887) \end{vmatrix} \qquad B1 \qquad AO1 \\ B1 \qquad AO1 \\ B1 \qquad AO1 \end{vmatrix}$		-			
$\begin{array}{c c} \tan^{-1}(-5) = -1.3734 \\ \arg(z) = -1.3734 + \pi = 1.77 & (1.768191887) \end{array} \qquad \begin{array}{c c} B1 & AO1 \\ B1 & AO1 \end{array}$	(b)	$\sqrt{26}$			
$\begin{array}{c c} \tan^{-1}(-5) = -1.3734 \\ \arg(z) = -1.3734 + \pi = 1.77 & (1.768191887) \end{array} \qquad \begin{array}{c c} B1 & AO1 \\ B1 & AO1 \end{array}$		$ z = \frac{1-2}{3} = 1.70 \ (1.699673171)$	B1	AO1	
		5	B1	AO1	
		$\arg(z) = -1.3734 + \pi = 1.77$ (1.768191887)	R1		
$z = 1.70(\cos 1.77 + i \sin 1.77)$ B1 AO1			B1	A01	
				_	

Qu. No.	Solution	Mark	AO	Notes
3.	$S_n = \sum_{r=1}^n r(r+1)(r+3)$	M1	AO1	
	$= \sum_{r=1}^{n} (r^3 + 4r^2 + 3r)$	A1	AO1	
	$= \frac{n^2(n+1)^2}{4} + 4\frac{n(n+1)(2n+1)}{6} + 3\frac{n(n+1)}{2}$	A1	AO1	
	$= \frac{n(n+1)}{12} (3n(n+1) + 8(2n+1) + 18)$	A1	AO1	
	$=\frac{n(n+1)}{12}(3n^2+19n+26)$	A1	AO1	
	$=\frac{n(n+1)(n+2)(3n+13)}{12}$	A1 [6]	AO1	
4.(a)	$\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\beta\gamma + \gamma\alpha + \alpha\beta)$	M1	AO2	
	$= 4^2 - 2 \times 14$ = -12	A1	AO2	
	A cubic equation either has 3 real roots or 1 real root. Since the sum of squares is negative, the 3 roots cannot all be real so there is just 1 real root	B1	AO2	
(b)	A second root is $1 - 3i$, since complex roots occur in conjugate pairs. The third root is 2	B1 E1 B1	AO1 AO2 AO1	
	since the sum of the 2 complex roots is 2 and the sum of the 3 roots is 4,	E1	AO2	
		[7]		

GCE AS and A LEVEL FURTHER MATHEMATICS Sample Assessment Materials 11

Qu. No.	Solution	Mark	AO	Notes
5.	Putting $z = x + iy$,	M1	AO3	
	x - 3 + iy = 2 x + i(y + 1)	A1	AO3	
	$(x-3)^{2} + y^{2} = 4(x^{2} + (y+1)^{2})$	m1	AO3	
	$x^2 - 6x + 9 + y^2 = 4x^2 + 4y^2 + 8y + 4$			
	$3x^2 + 3y^2 + 6x + 8y - 5 = 0$	A1	AO3	
	This is the equation of a circle			
	$x^2 + y^2 + 2x + \frac{8}{3}y = \frac{5}{3}$	M1	AO1	
	$(x+1)^{2} + \left(y + \frac{4}{3}\right)^{2} = \frac{5}{3} + 1 + \frac{16}{9}$	m1	AO1	
	$Centre = \left(-1, -\frac{4}{3}\right)$	A1	AO1	
	$\text{Radius} = \sqrt{\frac{5}{3} + 1 + \frac{16}{9}}$	M1	AO1	
	$=2.11 \left(\frac{2\sqrt{10}}{3}\right)$	A1	AO1	
		[9]		

Qu. No.	Solution	Mark	AO	Notes
6.(a)	Reflection matrix = $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	B1	AO1	
	Translation matrix = $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$	B1	AO1	
	Rotation matrix = $\begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	B1	AO1	
	$\mathbf{T} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	M1	AO1	
	$= \begin{bmatrix} 0 & -1 & 2 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$	A1	AO1	
	$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} -1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$	A1	AO1	
(b)	Fixed points satisfy $\begin{bmatrix} -1 & 0 & 2 \end{bmatrix} \begin{bmatrix} x \end{bmatrix} \begin{bmatrix} x \end{bmatrix}$			
	$\begin{bmatrix} -1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$	M1	AO1	
	-x+2=x; $y+1=yThe second equation is inconsistent so there$	A1	AO1	
	are no fixed points.	A1	AO2	
		[9]		

Qu. No.	Solution	Mark	AO	Notes
7.(a)	Putting $z = x + iy$ and $w = u + iv$,	M1	AO1	
	u + iv = (x + iy)(x + 1 + iy)	A1	AO1	
	v = imaginary part $= y(x + 1) + xy$	A1	AO1	
	= y(1+2x)			
	$u = \text{real part} = x(x+1) - y^2$	A1	AO1	
	2	5.44		
(b)	$u = x(x+1) - (x+1)^2$	M1	AO3	
	= -x - 1	A1	AO3	
	= -x - 1 v = (x + 1)(2x + 1) = -u(-2u - 1)	M1	AO3	
	= -u(-2u-1)	A1	AO3	
	$=2u^2+u$	A1	AO3	
		[9]	101	
8.(a)(i)	$\mathbf{AB} = (2\mathbf{i} + 3\mathbf{j} + \mathbf{k}) - (\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$	M1 A1	AO1 AO1	
	= i + j -2 k		AUT	
(ii)	Equation of line is		İ	
	$\mathbf{r} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k} + \lambda(\mathbf{i} + \mathbf{j} - 2\mathbf{k})$	B1	AO1	
(b)(i)	The line cuts the plane where			
	$1 + \lambda + 3(2 + \lambda) - 2(3 - 2\lambda) = 5$	M1	AO1	
	$\lambda = \frac{1}{2}$	A1	AO1	
	\mathbf{D} : $(3, 5, 2)$	A1	AO1	
	Point of intersection = $\left(\frac{3}{2}, \frac{5}{2}, 2\right)$		/.01	
	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>			
(ii)	Direction of normal = $(1,3, -2)$	B1	AO1	
	If θ denotes the angle between L and the			
	normal,			
	$\cos \theta = \frac{(1,3,-2).(1,1,-2)}{ (1,3,-2) (1,1,-2) }$	M1	AO1	
	$=\frac{8}{\sqrt{14}\sqrt{6}}$	A1	AO1	
	$\int -\sqrt{14}\sqrt{6}$	A1	AO1	
	$\theta = 29.2(0593)^{\circ}$	A1	AO1	
	Angle between L and plane = 60.8° .	A1	AO1	
		[12]		
		[14]		