AS Further Mathematics Unit 1: Further Pure Mathematics A General instructions for marking GCE Mathematics

1. The mark scheme should be applied precisely and no departure made from it. Marks should be awarded directly as indicated and no further subdivision made.
2. Marking Abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

```
cao = correct answer only
MR = misread
PA = premature approximation
bod = benefit of doubt
oe = or equivalent
si = seen or implied
ISW = ignore subsequent working
```

F.T. = follow through ($\boldsymbol{\imath}$ indicates correct working following an error and
indicates a further error has been made)

Anything given in brackets in the marking scheme is expected but, not required, to gain credit.
3. Premature Approximation

A candidate who approximates prematurely and then proceeds correctly to a final answer loses 1 mark as directed by the Principal Examiner.
4. Misreads

When the data of a question is misread in such a way as not to alter the aim or difficulty of a question, follow through the working and allot marks for the candidates' answers as on the scheme using the new data.
This is only applicable if a wrong value, is used consistently throughout a solution; if the correct value appears anywhere, the solution is not classed as MR (but may, of course, still earn other marks).
5. Marking codes

- 'M' marks are awarded for any correct method applied to appropriate working, even though a numerical error may be involved. Once earned they cannot be lost.
- ' m ' marks are dependant method marks. They are only given if the relevant previous ' M ' mark has been earned.
- 'A' marks are given for a numerically correct stage, for a correct result or for an answer lying within a specified range. They are only given if the relevant M / m mark has been earned either explicitly or by inference from the correct answer.
- 'B' marks are independent of method and are usually awarded for an accurate result or statement.
- 'S' marks are awarded for strategy
- 'E' marks are awarded for explanation
- 'U' marks are awarded for units
- 'P' marks are awarded for plotting points
- 'C' marks are awarded for drawing curves

AS Further Mathematics Unit 1: Further Pure Mathematics A Solutions and Mark Scheme

\begin{tabular}{|c|c|c|c|c|}
\hline Qu.
No. \& Solution \& Mark \& AO \& Notes \\
\hline 1. \& \begin{tabular}{l}
When \(n=1,4^{n}+2=6\) which is divisible by 6 so the proposition is true for \(n=1\). \\
Assume the proposition to be true for \(n=k\) so that \(4^{k}+2\) is divisible by 6 and equals \(6 N\) \\
Consider (for \(n=k+1\))
\[
\begin{aligned}
4^{k+1}+2 \& =4 \times 4^{k}+2 \\
\& =4 \times(6 N-2)+2 \\
\& =24 N-6
\end{aligned}
\] \\
This is divisible by 6 so true for \(k \Rightarrow\) true for \(k\) +1 . Since true for \(n=1\), the result is proved by induction.
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
M1 \\
A1 \\
A1 \\
A1 \\
A1 \\
[7]
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{AO} 2 \\
\& \mathrm{AO} 2
\end{aligned}
\] \& \\
\hline 2.(a)

(b) \& \[
\left.$$
\begin{array}{l}
\begin{array}{rl}
\frac{-1+7 \mathrm{i}}{2+\mathrm{i}} & =\frac{(-1+7 \mathrm{i})(2-\mathrm{i})}{(2+\mathrm{i})(2-\mathrm{i})} \\
& =\frac{5+15 \mathrm{i}}{5} \\
& =1+3 \mathrm{i}
\end{array} \\
\begin{array}{rl}
2(x+\mathrm{i} y)+\mathrm{i}(x-\mathrm{i} y)=1+3 \mathrm{i} \\
2 x+y=1 \\
x+2 y=3
\end{array} \\
\begin{array}{rl}
\left(x=-\frac{1}{3} ; y=\frac{5}{3}\right)
\end{array} \\
z=\frac{-1+5 \mathrm{i}}{3}
\end{array}
$$\right] $$
\begin{aligned}
& |z|=\frac{\sqrt{26}}{3}=1.70(1.699673171) \\
& \tan { }^{-1}(-5)=-1.3734 \ldots \\
& \arg (z)=-1.3734+\pi=1.77 \quad(1.768191887) \\
& z=1.70(\cos 1.77+\mathrm{isin} 1.77)
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| A1 |
| M1 |
| A1 |
| A1 |
| A1 |
| B1 |
| B1 |
| B1 |
| B1 |
| [11] | \& \[

$$
\begin{gathered}
\text { AO3 } \\
\text { AO1 }
\end{gathered}
$$
\] \& FT from line above

\hline
\end{tabular}

$\begin{aligned} & \text { Qu. } \\ & \text { No. } \end{aligned}$	Solution	Mark	AO	Notes
3.	$\begin{aligned} & S_{n}=\sum_{r=1}^{n} r(r+1)(r+3) \\ & =\sum_{r=1}^{n}\left(r^{3}+4 r^{2}+3 r\right) \\ & =\frac{n^{2}(n+1)^{2}}{4}+4 \frac{n(n+1)(2 n+1)}{6}+3 \frac{n(n+1)}{2} \\ & =\frac{n(n+1)}{12}(3 n(n+1)+8(2 n+1)+18) \\ & =\frac{n(n+1)}{12}\left(3 n^{2}+19 n+26\right) \\ & =\frac{n(n+1)(n+2)(3 n+13)}{12} \end{aligned}$	M1 A1 A1 A1 A1 A1 [6]	AO1 AO1 AO1 AO1 AO1 AO1	
4.(a)	$\begin{aligned} & \alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2(\beta \gamma+\gamma \alpha+\alpha \beta) \\ & =4^{2}-2 \times 14 \\ & =-12 \end{aligned}$ A cubic equation either has 3 real roots or 1 real root. Since the sum of squares is negative, the 3 roots cannot all be real so there is just 1 real root	M1 A1 B1	AO2 AO2 AO2	
(b)	A second root is $1-3 \mathrm{i}$, since complex roots occur in conjugate pairs. The third root is 2 since the sum of the 2 complex roots is 2 and the sum of the 3 roots is 4 ,	B1 E1 B1 E1 [7]	AO1 AO2 AO1 AO2	

Qu. No.	Solution	Mark	AO	Notes
5.	Putting $z=x+\mathrm{i} y$, $\|x-3+\mathrm{i} y\|=2\|x+\mathrm{i}(y+1)\|$ $(x-3)^{2}+y^{2}=4\left(x^{2}+(y+1)^{2}\right)$ $x^{2}-6 x+9+y^{2}=4 x^{2}+4 y^{2}+8 y+4$ $3 x^{2}+3 y^{2}+6 x+8 y-5=0$ This is the equation of a circle $x^{2}+y^{2}+2 x+\frac{8}{3} y=\frac{5}{3}$	A1	AO3	AO3
m1	AO3			
$(x+1)^{2}+\left(y+\frac{4}{3}\right)^{2}=\frac{5}{3}+1+\frac{16}{9}$	A1	AO3		
Centre $=\left(-1,-\frac{4}{3}\right)$	AO1			
Radius $=\sqrt{\frac{5}{3}+1+\frac{16}{9}}$	m1	AO1		
$=2.11\left(\frac{2 \sqrt{10}}{3}\right)$	AO1			

$\begin{aligned} & \text { Qu. } \\ & \text { No. } \end{aligned}$	Solution	Mark	AO	Notes
6.(a)	$\text { Reflection matrix }=\left[\begin{array}{lll} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right]$	B1	AO1	
	Translation matrix $=\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1\end{array}\right]$	B1	AO1	
	$\text { Rotation matrix }=\left[\begin{array}{ccc} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right]$	B1	AO1	
	$\mathbf{T}=\left[\begin{array}{ccc} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right]\left[\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{array}\right]\left[\begin{array}{lll} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right]$	M1	AO1	
	$=\left[\begin{array}{ccc} 0 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{array}\right]\left[\begin{array}{lll} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right]$	A1	AO1	
	$=\left[\begin{array}{ccc} -1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right]$	A1	AO1	
(b)	Fixed points satisfy $\left[\begin{array}{ccc} -1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right]\left[\begin{array}{l} x \\ y \\ 1 \end{array}\right]=\left[\begin{array}{l} x \\ y \\ 1 \end{array}\right]$	M1	AO1	
	$-x+2=x ; y+1=y$	A1	AO1	
	are no fixed points.	A1	AO2	
		[9]		

Qu. No.	Solution	Mark	AO	Notes
7.(a)	Putting $z=x+\mathrm{i} y$ and $w=u+\mathrm{i} v$, $u+\mathrm{i} v=(x+\mathrm{iy})(x+1+\mathrm{i})$ $v=$ imaginary part $=y(x+1)+x y$ $=y(1+2 x)$ $u=$ real part $=x(x+1)-y^{2}$	A1	AO1	AO1
A1	AO1			

